Towards an understanding of tensile deformation in Ti-based bulk metallic glass matrix composites with BCC dendrites.
نویسندگان
چکیده
The microstructure and tension ductility of a series of Ti-based bulk metallic glass matrix composite (BMGMC) is investigated by changing content of the β stabilizing element vanadium while holding the volume fraction of dendritic phase constant. The ability to change only one variable in these novel composites has previously been difficult, leading to uninvestigated areas regarding how composition affects properties. It is shown that the tension ductility can range from near zero percent to over ten percent simply by changing the amount of vanadium in the dendritic phase. This approach may prove useful for the future development of these alloys, which have largely been developed experimentally using trial and error.
منابع مشابه
Tensile deformation mechanisms of an in-situ Ti-based metallic glass matrix composite at cryogenic temperature
Remarkable tensile ductility was first obtained in an in-situ Ti-based bulk metallic glass (BMG) composite at cryogenic temperature (77 K). The novel cryogenic tensile plasticity is related to the effective accommodation of ductile body-centered cubic dendrites at 77 K, characteristic of the prevailing slip bands and dislocations, as well as lattice disorder, which can effectively hinder the pr...
متن کاملAn improved tensile deformation model for in-situ dendrite/metallic glass matrix composites
With regard to previous tensile deformation models simulating the tensile behavior of in-situ dendrite-reinforced metallic glass matrix composites (MGMCs) [Qiao et al., Acta Mater. 59 (2011) 4126; Sci. Rep. 3 (2013) 2816], some parameters, such as yielding strength of the dendrites and glass matrix, and the strain-hardening exponent of the dendrites, are estimated based on literatures. Here, Ti...
متن کاملA Tensile Deformation Model for In-situ Dendrite/Metallic Glass Matrix Composites
In-situ dendrite/metallic glass matrix composites (MGMCs) with a composition of Ti₄₆Zr₂₀V₁₂Cu₅Be₁₇ exhibit ultimate tensile strength of 1510 MPa and fracture strain of about 7.6%. A tensile deformation model is established, based on the five-stage classification: (1) elastic-elastic, (2) elastic-plastic, (3) plastic-plastic (yield platform), (4) plastic-plastic (work hardening), and (5) plastic...
متن کاملDesigning Bulk Metallic Glass Matr ix Composites with High Toughness and Tensile Ductility
Metallic glasses have been the subject of intense scientific study since the 1960s, owing to their unique properties such as high strength, large elastic limit, high hardness, and amorphous microstructure. However, bulk metallic glasses have not been used in the high strength structural applications for which they have so much potential, owing to a highly localized failure mechanism that result...
متن کاملDevelopment of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility.
The mechanical properties of bulk metallic glasses (BMGs) and their composites have been under intense investigation for many years, owing to their unique combination of high strength and elastic limit. However, because of their highly localized deformation mechanism, BMGs are typically considered to be brittle materials and are not suitable for structural applications. Recently, highly-toughen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Scientific reports
دوره 6 شماره
صفحات -
تاریخ انتشار 2016